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Because the various topological effects (0-structures) such as the Aharonov- 
Bohm effect, the anyon system, and non-Abelian statistics are pure quantum 
effects and should emerge naturally in a quantization procedure, we systematically 
discuss a general quantization scheme in a geometric formalism where wave- 
functions are smooth sections of some vector bundles over configuration space. 
Following ideas of L. Schulman, M. Laidlaw, J. S. Dowker, and others, we 
choose those vector bundles to be the associated bundles of the universal covering 
space of configuration space. The 0-structures are shown to result from the fact 
that various vector bundles can be built over the universal covering space, which 
are labeled by the nonequivalent irreducible unitary representations of the funda- 
mental group of configuration space. A fiat connection description of 0-structures 
is also possible, owing to Milnor's theory. 

1. INTRODUCTION 

In the past several years, topological effects in quantum theory have 
been readdressed due to their possible relevance for understanding the frac- 
tional quantum Hall effect and high-To superconductivity (Wilczeck, 1990). 

Many phenomena related to topology have been found in various fields, 
for example, Dirac's monopole (Dirac, 1958), the Aharonov-Bohm effect 
(Aharonov and Bohm, 1959), the chiral anomaly (Witten, 1983), solitons, 
instantons, the 0-vacuum (Witten, 1979), and more recently, anyon systems 
(Wen et al., 1989). Different approaches to understanding these topological 
effects in quantum theory have been proposed. Roughly speaking, they may 
be divided into two classes, model-based approaches and quantization-based 
approaches. The former, such as Wilczeck's (1982) model for anyon gases, 
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has the advantage of concreteness and clarity of the physical picture. How- 
ever, it seems to the authors that the latter approach is more acceptable. 
There are two reasons supporting this conclusion: (1) Not all existing topo- 
logical effects can be assigned a meaningful "model." (2) Since those topo- 
logical effects appear only in quantum theory, it is natural to suppose that 
they emerge at the stage of the quantization procedure from classical theory 
to the corresponding quantum theory. 

Investigations of topological effects in quantum theory along this 
approach started around the 1970s by Schulman, Laidlaw, DeWitt-Morette, 
Dowker, and others. They argued that, when performing path integral quan- 
tization in the multiconnected configuration space Q, the propagator should 
generally take the form (Schulman, 1968) 

K(q', t'; q, t ) = X  z ( a ) K ' ( q  ', t'; q, t) (1.1) 
ct 

where K" is a kernel summing over paths that belong to the same homotopic 
class a~Trl(Q). It was proved that the weight factors {x(a)} must form a 
scalar unitary representation of the fundamental group 1c,(Q) to fit general 
requirements on propagators (Laidlaw and DeWitt, 1971). 

Dowker (1972) rederived this result by performing the usual path inte- 
gration over the universal covering space O of Q, with an argument that 
wavefunctions single-valued in Q could be multivalued in Q. 

Further generalization of Dowker's idea is straightforward. That is, 
"wavefunctions" of a quantum theory could be multicomponent, multi- 

va lued  functions in Q (but single-valued in Q) e.g., tP~C~ cgN). The 
physical interpretation of the multicomponentness of "wavefunctions" is 
related to "internal freedoms" of quantum systems as usual. Under this 
general situation, a similar result analogous to (1.1) can be readily found 
(Sudarshan et al., 1988) 

N 

CF,(yq) = E U,,,(Y)~F,,(q) (1.2) 

where U(y) should form an N-dimensional unitary representation of rc,(Q). 
Obviously, when rc,(Q) has various nonequivalent irreducible unitary 

representations (NIUP), each of them will bear a distinct quantum theory. 
Therefore, there is an ambiguity in quantizing a classical system with non- 
trivial configuration space. This kind of ambiguity is totally different from 
dynamical ones such as the ordering ambiguity in conventional quantum 
mechanics (Bao and Zhu, 1991). This kind of ambiguity plays a key rule in 
understanding various 0-structures in quantum theory. To be concrete, let 
us give some well-known examples: 
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1. Aharonov-Bohm effect (Aharonov and Bohm, 1959): 

/ [ I ( Q )  = ~ 1 ( ~ 3  - , ~ )  = ,,~ ' 

HomQr~(O), U(1)) = U(1) (1.3) 

Hom(rcl(Q), U(N)) =0, N>  I 

Therefore, the NIURs of the zrt(Q) are all one-dimensional and can be 
labeled by a parameter 0. Adoption of different 0 values means different 
quantizations and will lead to different quantum theories. (In the usual 
model for the Aharonov-Bohm effect, 0 = q(P, where q is the charge pos- 
sessed by the particle going around a solenoid with magnetic flux (I). The 
ambiguity here could be regarded as the ambiguity in choosing models with 
parameters q, ~.) 

2. Identical-particle system. The configuration space of n identical 
particles in ~a  is (Laidlaw and DeWitt, 1971) 

Q = (~ ,d_  D~)/S, (1.4) 

where D" is the configuration that any two particles occupy the same point 
in ~a, and S, is the permutation group of order n. 

The fundamental group of the Q is given as 

~r,(Q) = s , ,  d>2  
(1.5) 

try(Q) =B,,  d=2  

where S,, is the permutation group and B, is Artin's braiding group. 
If only scalar quantum mechanics is concerned, since 

Hom(Jrl(Q), U(1)) =Z2, d>2  
HomOrj(Q), U(1)) = Z, d=2  (1.6) 

then a well-known conclusion can be drawn, in the spirit of (1.1), that only 
fermion and boson statistics exist when d> 2, but fractional statistics (or 
more generally, 0-statistics) exists when d= 2 (Sudarshan et al., 1988). 

However, as ~r1(Q) is non-Abelian, it admits high-dimensional NIUR. 
Therefore, in the spirit of (1.2), there exists non-Abelian statistics. [For his- 
torical reasons, the non-Abelian statistics for d>2, which is classified by 
Hom(S,, U(N)), commonly called parastatistics, while that for d = 2, which 
is classified by Hom(B,, U(N)), is commonly called as exotic statistics (Date 
et aL, 1990).] 

Now, we have seen that the proposition (1.1) or more generally (1.2) 
indeed has a key role in the understanding of various 0-structures in quan- 
tum theory via quantization. 

However, (1.1) and (1.2) are proposed a priori. It is crucial to under- 
stand them in a general background concerning quantization f o r  both 
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mathematical interest and practical applications. This is actually the main 
purpose of this paper. As 0-structures are related to global properties, there 
is a good reason to treat them in light of geometric quantization, which is 
essentially the "globalization" of canonical quantization, as the title of this 
paper suggests. 

The organization of this paper is as follows. In Section 2, we discuss 
the general formalism of quantization based on the geometric viewpoint 
where the Hilbert spaces upon which quantum theory is based are established 
as the spaces of  square-integrable smooth sections of some vector bundles 
over configuration space Q. (For completeness, a brief discussion on dynam- 
ical problems is also presented.) In Section 3, we discuss how the vector 
bundles can be found through both mathematical techniques and physical 
intuition. In Section 4, we derive (1.2) as a natural result of our quantization 
procedure and relate it to a concrete concept, flat connections on bundles, 
which seems to be more applicable for practical purposes. Section 5 presents 
a summary of our results and an extended discussion. 

2. GENERAL FORMALISM 

In this section, we present a general formalism of quantization from a 
geometric viewpoint. The discussion is based on the Hilbert space approach 
to quantum mechanics, where a quantum pure state is related to a ray in 
some Hilbert space ~ and a quantum observable is related to a self-adjoint 
operator acting on ~ .  

It is important that the above statements should be properly under- 
stood. For example, not every vector in ~ can be regarded as a physically 
realizable state (e.g., when there is a superselection rule), and not every 
classical observable can be associated with a self-adjoint operator on 
without disobeying other physical requirements (Isham, 1984). 

Now, insofar as "quantization" is concerned, given a specific classical 
system, (1) how do we construct the Hilbert space? (2) how do we select the 
subset of classical observables that can be "quantized?" and (3) how do we 
construct the concrete self-adjoint operators that are to be associated with 
them? 

According to the ideas of geometric quantization and those initiated by 
Schulman, DeWitt, Dowker, and others as mentioned in Section 1, it is quite 
reasonable to construct the Hilbert space ~ from the space of smooth 
sections of some vector bundle E over the classical phase space M. (Needless 
to say, cross sections of a vector bundle have a natural vector space struc- 
ture.) It is well known in geometric quantization that in order to be in accord 
with the uncertainty principle, such a constructed ~ is too large and must 
be restricted via the mechanism of "polarization" (Woodhouse, 1980). For 
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the purpose of this paper, it is helpful not to deal with the most general 
situations, but to limit our considerations to those classical systems whose 
phase space M is a cotangent bundle of configuration space Q, i.e., M = 
T*Q. The Schrtdinger polarization will be adopted, whose results are most 
comparable with the conventional language of quantum mechanics 
(Sniatycki, 1980). As a result, the Hilbert space H now can be equally 
regarded as being constructed from F(E), the space of smooth sections of 
some vector bundle E over classical configuration space Q. 

In order for those sections to indeed form a Hilbert space, it is required 
that the vector bundle E should be a Hermitian vector bundle. Namely, there 
is an assignment of an inner product ( , ,  ,)q to each vector space fiber cgn q 
such that, if ~g~, V2 are two smooth sections of E, then the map 
q ~ (q~j(q), "Pffq))q is smooth. If such a Hermitian structure exists in E, 
then the inner product of two smooth sections Wz, ~P2~F(E) can be defined 
a s  

(W,, W2)=~o (te,(q), W2(q))q dp(q) (2.1) 

Therefore, the Hilbert space J f  upon which quantum mechanics is based 
can be chosen as J f  =L2(F(E);dp), where L 2 means that the smooth sec- 
tions chosen are square-integrable in the sense of (2. I). 

However, question 1 has not been completely answered. As there are 
many vector bundles that can be constructed from the same configuration 
space Q (for example, vector bundles with different fiber dimensions or 
vector bundles with identical fiber dimension but belonging to different 
Chern classes), how can we choose a preferred one from those possible 
constructed vector bundles? Or, if there is no preference, what are the differ- 
ences among resulting quantum theories built upon different vector bundles? 

At this stage, we only point out that the answer to these questions are 
closely related to the 0-structures in quantum theories as mentioned in 
Section 1. Detailed discussion is presented in the next section. 

A complete formalism for quantization should include answers to ques- 
tions 2 and 3, which are absolutely nontrivial and important. However, for 
the purpose of this paper (concerning 0-structures), they are not of primary 
interest and we will only mention briefly some general ideas concerning these 
dynamical questions. 

The subset of classical observables to be quantized can be properly 
selected through group theory considerations. The procedure mainly goes as 
follows (Isham, 1984). 

Step 1. Look for a finite-dimensional Lie group G of symplectic trans- 
formations of phase space M. The Lie group G must be chosen so that 
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each one-parameter subgroup of G generates a one-parameter family of 
symplectic transformations with a corresponding Hamiltonian vector field 
on M. The set of these fields is denoted h. 

Step 2. Try to associate an observable f with each Hamiltonian vector 
field X in h (i.e., X =  ~I) in such a way that the Poisson brackets of the 
corresponding set of observables close to give the Lie algebra L(G) again. 

Step 3. If the above steps are successful, one may identify the subset of 
classical observables to be quantized with those chosen. 

After selecting the subset of classical observables to be quantized, the 
subsequent work of quantization is essentially to study the irreducible unit- 
ary representations of the "canonical group" G on some Hilbert space ~ = 
L2(F(E), d/t) that has been determined previously. 

The unitary representation of G on this ~ can be formally defined as 
follows (Wallach, 1973): 

/ , \ 1 /2  

(U(g)W)(x)=l~(x)) l~gW(g-'x) (2.2) 

where the Radon-Nikodyn derivative d#g/d# is desired in order to guarantee 
that the representation is unitary, and a lift-action lg T: c~ __) ~gx is introduced 
so that the left side and right side of  (2.2) are defined on the same fiber of 
E. It can be readily shown that, in order that (2.2) indeed defines a unitary 
representation of G, the lift-action I~ should obey the following properties: 

lg'g2 (2.3) 
<u, v>x 

Now, the question is whether such a lift-action exists. If it exists, how many 
nonequivalent lifts are there? These problems, commonly referred to as the 
"G-lift problem in bundles" (Gottlieb, 1978), are important since non- 
equivalent lifts will lead to different representations of G and thus to different 
quantum theories. A complete solution of the G-lift problem for general 
situations awaits further, mathematical investigation. In the physical sense, 
we realize that the G-lift problem involves a kind of ambiguity in quantiza- 
tion, which is more or less comparable with the "ordering ambiguity" in the 
canonical quantization of conventional quantum mechanics (Bao and Zhu, 
1991). 

As the purpose of this paper concerns understanding 0-structures in 
quantum theory, which does not include the G-lift problem, we will discuss 
this aspect of quantization elsewhere and devote the next section to the 
problem of constructing vector bundles E over configuration space Q, which 
is directly related to 0-structures, as indicated previously. 
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3. VECTOR BUNDLES OVER CONFIGURATION SPACE 

As mentioned in the last section, when quantizing a given classical 
system with phase space M= T'Q, the Hilbert space upon which quantum 
theory is based is generally chosen as Jt~=L2(F(E), dp), where E is some 
Hermitian vector bundle over Q, i.e., ~ "  ~ E - ~  Q. 

Now the problem is how various vector bundles can be constructed 
over Q. Different vector bundles usually lead to different Hilbert spaces and 
thus to different quantum mechanics corresponding to the same classical 
model. 

According to general fiber bundle theory, there is a standard method 
of constructing Hermitian vector bundles over some space Q. That is, we 
first look for some "master" principal K-bundle P over Q, i.e., K ~  P ~ Q, 
and if k ~-~ ~(k)  is a unitary representation of the Lie group K on ~ ,  
then an associated Hermitian vector bundle, denoted as P (~)~ ~'", can be 
constructed as follows (Eguchi et al., 1980): 

~ " ~ P @ ~ Q ,  where (p, v)=(pk, ~(k-~)v) (3.1) 

The Hermitian structure on this vector bundle is defined as 

([p, ul, [pk, V])q= <u, ql(k)v)~e, (3.i) 

where the right-hand side is natural inner product on cr 
This vector bundle can also be obtained through a two-stage construc- 

tion as follows: 
Given a "master" principal K-bundle P over Q, if k ~ q/(k) is a unitary 

representation of K on ~ ' ,  then q/eHom(K, U(n)) and we can first construct 
the principal U(n) bundle, 

U(n)~ e@ U(n)~a, where (p, U)=(pk, ql(k-I)U) (3.3) 

Then, since U(n) acts on cr we can further form the associated vector 
bundle, 

([p, ul, v)=([p, u]u', u'-'v) 

(3.4) 

As there is a vector bundle isomorphism defined by 

([p, ul, v) [p, Vvl 
(3.5) 
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the two vector bundles defined by (3.1) and (3.4) are actually isomorphic. 
Obviously, these vector bundles P @~ c~,, constructed in a standard 

way from the master principal bundle K ~ P ~ Q, are classified by the non- 
equivalent irreducible unitary representations (NIUR) of the Lie group K. 

Now our problem concerning the construction of the Hiibert space is 
reduced to what "master" principal bundle should be adopted. A purely 
mathematical consideration of constructing vector bundles will hardly 
answer this problem. However, in no sense can quantization be regarded as 
a purely mathematical exercise. The physical ideas behind it are of essential 
importance. In fact, as indicated in the Introduction, if Feynman's idea of 
"summing over history" is accepted, there is a strong physical intuition, as 
suggested by Schulman, DeWitt, Dowker, and others, that the universal 
covering space Q of configuration space Q, which itself is a principal bundle 
r c I ( Q ) ~ P ~ Q ,  should be taken as our "master" principal bundle for 
quantization. 

Therefore, with the combined use of physical intuition and mathemati- 
cal techniques, we have obtained a family of Hilbert spaces from a single 
classical configuration space Q as follows: 

(3.6) 

This family of Hilbert spaces is obviously labeled by the NIUR of rrl(Q). 
In the next section, we will see how most 0-structures in quantum theory 

can be well understood in this formalism. 

4. 0-STRUCTURES AND FLAT CONNECTIONS 

Through a careful investigation of general quantization, we have con- 
structed a family of Hilbert spaces ~f~<,~,~Q)) as in (3.6) from a given classical 
system. In this section, as the main purpose of this paper, we discuss the 
physical meaning of our construction and relate this construction to various 
0-structures in quantum theory. 

As mentioned in the Introduction, the 0-structures in quantum theory 
can be best described by (1.1) or (1.2) which are proposed a priori. Now, 
we will try to derive them with the aid of the above-discussed quantization 
scheme. 

When viewing ~F as a smooth section of a vector bundle E, it is easy to 
see that (1.2) has something to do with parallel transport between fibers of 
E, and therefore the concept of connection on a bundle will play a role here. 
Actually, it seems that it is the fiat part- of the connection on a bundle that 
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has to do with 0-structures (Yu et aL, 1991), Therefore, we first discuss 
connections on the bundle, 

cg"~OQce"~ Q (4.1) 

An important result closely related to our consideration has been given by 
Milnor (1975), which states that there is a natural flat connection on each 
of the Q @~, U(n), and furthermore, any U(n) bundle on Q with a flat 
connection is of the form Q @~, U(n) for some unitary representation q/ 
of tel(Q). 

Now, as there exists a vector bundle isomorphism defined by (3.5), 
we may equally well concentrate on the ~ ( ~  U(n) principal bundle to 
understand the relevant results of our general quantization. [Similar to scalar 
geometric quantization, where it is the U(1) principal bundle rather than the 
complex line bundle that is considered.] 

In order for global cross sections to exist, the principal bundle 
O @~ U(n) must necessarily be trivializable, i.e., there is a bundle morphism 
as follows: 

(~ U(n) ~ Q (~ U(n) 
q/ 

(4.2) 
[y, U] ~-~ (r(y), D(y)U) 

where D(yT)=D(y)ql(y), V)'~rj(Q). According to Milnor (1975), the map 
function D: 0 ~ U(n) can be expressed via the natural flat connection on 
O_ @~ U(n), with boundary condition D(yo)= I, as 

D(y)=~ exp(i fcA ) (4.3) 

where C is any curve in Q whose lift to Q joins y0 to the point y [there is a 
curve lifting lemma (Dieudonne, 1972) that guarantees that such a lift exists 
and is unique once Y0 is specified]. A is defined to be A = io-*c0, where co 
is the natural flat connection on 0 (~q~ U(n) and o-*c0 is its pullback to 
a @ U(n). 

Now let Cz be a closed curve in Q which belongs to 7/~zrl(Q). Then the 
condition D(yT) = D(y)q/(7) and (4.3) imply that the unitary representation 
of 7 can be equally expressed by the flat connection A as follows: 

ql(7)=~exp(ifcrA ) (4.4) 

This is a most important result that is relevant to the physical understanding 
of 0-structures. 
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As in (3.6), wavefunctions of quantum theory are smooth sections of 
@~/c~n. By the general theory of fiber bundles, the set of smooth sections 

of the associated bundle P Q x  F can be essentially defined (Chern, 1967) 

F(P (~r F)= {~F E C~( P, F) [ ~F(pk ) = k-'~P(p) } (4.5) 

Therefore, wavefunctions which now belong to F(Q ~)~ ~n) have the fol- 
lowing property 

q~(yT/) = q/(~-~)~(y), ~ C~ ~") (4.6) 

Referring to (4.4), this can be equivalently expressed as 

Therefore, we have rederived (1.2) as in (4.6) and, furthermore, the flat 
connection on the bundle has been included naturally in (4.7). 

It is interesting to note that if our Hilbert space had not been chosen 
to be L2(F(Q @~ c~n), d/z), then (4.6) and (4.7) would generally be non- 
equivalent when regarded as the starting points of further considerations, 
since (4.6) is related to Hom(Ir~(Q), U(n)), while (4.7) is related to the 
holonomy group over bundles. However, as our Hilbert space has been 
chosen to be L2(F(~) ~)4t~ n) for reasons mentioned in the last section, one 
may equally regard (4.6) or (4.7) as the starting point of further considera- 
tions, because of Milnor's theory. 

5. CONCLUSION AND DISCUSSION 

Recently, a possible "anyon explanation" for high-Tc superconductivity 
has given rise to new interest in 0-structures in quantum theory. With the 
argument that 0-structures are pure quantum effects and thus should emerge 
naturally in the procedure of quantization, we have systematically discussed 
a general quantization scheme in the geometric formalism where wavefunc- 
tions are smooth sections of some vector bundle over configuration space. 
(In other words, we considered the phase space T*Q with Schr6dinger polar- 
ization.) Our construction of the vector bundles is based on the standard 
construction of vector bundles from a "master" principal bundle chosen to 
be the universal covering space Q of the configuration space Q. The physical 
idea behind our construction follows essentially notions initiated by Schul- 
man, DeWitt, Laidlaw, Dowker, and others. The 0-structures naturally arise 
in our quantization procedure due to the variety of vector bundles that can 
be built from the master principal bundle Q. A flat connection description 
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of 0-structures is also possible in a natural way, owing to Milnor's theory. 
However, in spite of all its successes, our construction should not be 

regarded as a unique one or the most general one. Actually, the construction 
here seems to have the disadvantage that, if one regards wavefunctions that 
are smooth sections of vector bundles with fiber dimension greater than 
one, such as can describe "internal freedoms" of a corresponding quantum 
system, then the possible "internal freedoms" of the quantum systems quan- 
tized from a given classical system depend upon the fundamental group of 
configuration space. 

A natural way to overcome this problem is to investigate all possible 
vector bundles that can be built up over a specific classical configuration 
space and take the Hilbert space to be the set of square-integrable smooth 
sections of these bundles. However, this would be not only of purely mathe- 
matical interest, but too ambitious as well. An alternative way, which seems 
to us to be more acceptable, is to regard the causes of the nontrivial topology 
of configuration space as some kind of restriction (or equivalently, as some 
kind of "gauge invariance" possessed by the system under consideration), 
and "quantize" the system first without considering the restrictions but put- 
ting in the requirement of "gauge invariance" afterward to limit the size of 
the Hilbert space to be "physical." In the quantization of Yang-Mills field 
theory, the BRST method is actually along these lines (Felder, 1989), and 
so is the Chern-Simons model construction for anyon systems (Frolich and 
Marchetti, 1991). It seems that this approach to quantization can be applied 
to more general situations (Sorkin, 1986), and we are investigating this. 
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